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SECTION A

      Answer all questions.






(10  x 2 = 20)

1. Define limit inferior of a sequence of sets.

2. Mention the difference between a field and a σ – field.

3. Give an example for counting measure.

4. Define Minimal σ – field.

5. Show that a Borel set need not be an interval.

6. Define Signed measure.

7. State Radon – Nikodym theorem.

8. Show that the Lebesgue measure of any interval is its length.

9. State Borel-Cantelli lemma.

10. Mention the various types of convergence.

SECTION B

Answer any FIVE questions.





  (5 x 8 = 40)
11. Let 
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12. Show that every finite measure is a σ – finite measure but the converse need not be true.

13. State and prove the order preservation property of integrals and hence show that if 
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14. Show that if
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 is finite, then 
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15. State and prove Monotone convergence theorem for conditional expectation given a random object.

16. Show that the random variable X having the distribution function 
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 is neither discrete nor continuous. 
17. State and prove Chebyshev’s inequality.

18. If 
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SECTION C
Answer any TWO questions.





   (2*20=40)

19. a.) Let 
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be two increasing sequences of sets defined
     on
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 then show that
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b.) If 
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 where ‘c’ is a constant.








          (6+14)

20. State and prove basic integration theorem.

21. a.) State and prove Weak law of large numbers.

b.) State and prove Minkowski’s inequality.


            (10+10) 

22. a.) Derive the defining equations of the conditional expectation given a random 
     object and given a 
[image: image26.wmf]s

-field.

b.) Let Y1,Y2,…,Yn be iid random variables from U(0,θ), θ > 0. Show that 
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 where Xn = max{Y1,Y2,…,Yn}.


(10+10).
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